Ученые Университета науки и технологий МИСИС совместно со специалистами компании «СИТИЛАБС» усовершенствовали алгоритмы камер видеонаблюдения, определяющие смазанные и засвеченные номера автомобилей.
Предварительная классификация качества изображения существенно экономит вычислительные ресурсы и повышает точность работы всей системы видеонаблюдения. Модули кроссплатформенные, их можно установить на различные устройства. Эта разработка может быть с успехом использована как на дорогах общего назначения, так и на некоторых горнопромышленных объектах. Своевременное отсеивание заведомо некорректных изображений номеров позволяет не задействовать впустую вычислительные ресурсы для распознавания, а также снижает вероятность ошибочного распознавания.
Для определения степени засвеченности автомобильного номера специалисты предлагают использовать анализ гистограммы яркостей. Для детектирования как транспортных средств, так и автомобильных номеров используется хорошо известная нейронная сеть yolo-v5.
Отдельной задачей в ходе работы над нейронной сетью для определения смазанности было создание датасета для обучения. Условия, при которых изображения получаются смазанными, являются специфичными, и, чтобы отобрать из огромного количества данных те, которые были пригодны для класса смазанных номеров, уходит большое количество времени. Разработанный алгоритм помимо классификации на читаемые и нечитаемые изображения дает также количественную оценку степени смазанности и засвеченности. Эти данные в свою очередь могут быть использованы для корректировки параметров камеры, таких как значение выдержки и диафрагмы, что позволит повысить качество последующих кадров.